”...общественная некоммерческая организация, объединяющая русскоязычное население Тампере и регион Пирканмаа в Финляндии...” 

Парадокс Монти Холла

Это интересно Andrey 1 2 298 
Парадокс Монти Холла

Представьте, что некий банкир предлагает вам выбрать одну из трёх закрытых коробочек. В одной из них 50 центов, в другой – один доллар, в третьей – 10 тысяч долларов. Какую выберете, та вам и достанется в качестве приза.

Вы выбираете наугад, скажем, коробочку №1. И тут банкир (который, естественно, знает, где что) прямо на ваших глазах открывает коробочку с одним долларом (допустим, это №2), после чего предлагает вам поменять изначально выбранную коробочку №1 на коробочку №3.

Стоит ли вам менять своё решение? Увеличатся ли при этом ваши шансы получить 10 тысяч?

Это и есть парадокс Монти Холла — задача теории вероятности, решение которой, на первый взгляд, противоречит здравому смыслу. Над этой задачей люди ломают головы с 1975 года.

Парадокс получил название в честь ведущего популярного американского телешоу «Let’s Make a Deal». В этом телешоу были похожие правила, только участники выбирали двери, за двумя из которых прятались козы, за третьей – Кадиллак.

Большинство игроков рассуждали, что после того, как закрытых дверей осталось две и за одной из них находится Кадиллак, то шансы его получить 50-50.Очевидно, что когда ведущий открывает одну дверь и предлагает вам поменять своё решение, он начинает новую игру. Поменяете вы решение или не поменяете, ваши шансы всё равно будут равны 50 процентам. Так ведь?

Оказывается, что нет. На самом деле, поменяв решение, вы удвоите шансы на успех. Почему?

Ведущий знает расположение приза. Он не может открыть ту дверь, которую выбрали вы и ту, за которой находится приз (вариант, что вы предпочитаете получить козу, а не Кадиллак, мы не рассматриваем).

У вас есть два варианта – остаться при своём или поменять решение. Допустим, вы решили ничего не менять. Тогда машина вам достанется, только если вы действительно сразу угадали правильную дверь. Если вы поменяли решение, то вы выигрываете в том случае, если вы изначально ошиблись с дверью.

Согласно этой логике, если вы остаётесь при своём выборе, то ваши шансы равняются 1/3, а если меняете решение – 2/3.

Удивительно, но не всякий выбор из двух вариантов означает вероятность успеха фифти-фифти.

В 1990 году эта задача и её решение были опубликованы в американском журнале “Parade”. Публикация вызвала шквал возмущённых отзывов читателей, многие из которых обладали научными степенями.

Главная претензия заключалась в том, что не все условия задачи были оговорены, и любой нюанс мог повлиять на результат. Например, ведущий мог предложить поменять решение только в том случае, если игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора в такой ситуации приведёт к гарантированному проигрышу.

Однако за всё время существования телешоу Монти Холла люди, менявшие решение, действительно выигрывали вдвое чаще:

Из 30 игроков, поменявших первоначальное решение, Кадиллак выиграли 18 – то есть 60%

Из 30 игроков, которые остались при своём выборе, Кадиллак выиграли 11 – то есть примерно 36%

Так что приведённые в решении рассуждения, какими бы нелогичными они не казались, подтверждаются практикой.
  1. {usertitle}
    • 0
    РЕШЕНИЕ ПАРАДОКСОВ:
    1. «Что было раньше: яйцо или курица?»
    Даются два понятия «ЯЙЦО» и «КУРИЦА» и в РЯДУ ПОСЛЕДОВАТЕЛЬНО РАЗВЁРТЫВАЕМЫХ ПОНЯТИЙ (РПРП) требуется найти понятия предшествующие к каждому из них.

    В РПРП для "ЯЙЦА" предшествующим является "КУРИЦА", ибо понятием «эмбрион» (или другими ) не интересующим нас по постановке вопроса мы можем пренебречь.

    В РПРП для "КУРИЦА" пренебрегаемым понятием является «цыплёнок», но не «треснувшееся яйцо (из которого старается вылупиться цыплёнок)», ведь в постановке вопроса не акцентировано внимание на обязательности рассмотрения лишь яйца целостного состояния, т. е. для "КУРИЦА" предшествующим является не то понятие на котором акцентирован вопрос, а его разновидность.
    ВЫВОД: "КУРИЦА"
    2. Даётся понятие "Недвижущегося (Ахиллес)" , который не состоит в РПРП и отсутствие динамического состояния у которого завуалировано перемещениями, которую следую Зенону производим и мы переставляя это понятие на предыдущие позиции в РПРП понятия "Движущегося (черепаха)" - вот в этом и вся загадка этого апория Зенона. В такой постановке вопроса даже Усейну Болта не тягаться с черепахой...


Авторизируйтесь: или используйте форму ниже.

 Похожие публикации

Автобус Тампере - Санкт-Петербург
 Автобус Тампере - Санкт-Петербург
Транспортная компания "ФинЭстТур" предлагает быстро и комфортно доехать из Тампере в СПб и из СПб в Тампере. Ежедневно - трансфер Тампере -...

Опасности подстерегающие вас на дороге.
 Опасности подстерегающие вас на дороге.
Даже если вы с лёту сдали экзамен по вождению и никогда не разговариваете за рулём по телефону, существует множество других, совершенно неожиданных...

7 фактов о Стрелецком бунте
 7 фактов о Стрелецком бунте
“Не приведи бог видеть русский бунт – бессмысленный и беспощадный”. Русские люди очень терпеливы, но когда их терпению приходит конец, наступают...

Интересные факты о глазах
 Интересные факты о глазах
Среди всех органов чувств - глаза занимают особое место. До 80% информации, получаемой организмом из вне проходит через глаза. -Известно, что...

Ловушка дьявола
 Ловушка дьявола
Ловушка дьявола – одно из аномальных мест в Италии. Согласно одной из существующих легенд в городе Такона на острове Сицилия есть одно очень...